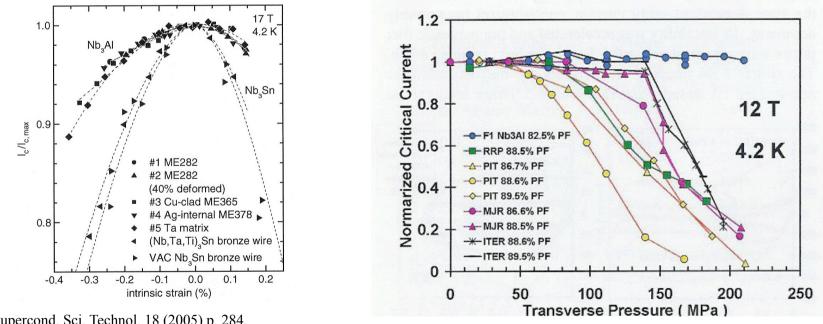
Present Status of Nb₃Al Development at KEK

in collaboration with NIMS

K. Tsuchiya

KEK


Outline

- Introduction
- Experience of billets fabrication (Hitachi Cable)
- Fabricated wires during past several years
- Electroplating technique
- Ic measurement method
- Study of Ta-matrix wire (ME476)
- K2 (ME492) and K1(ME493) wire
- Summary

> Nb₃Al has a great potential for high-field application

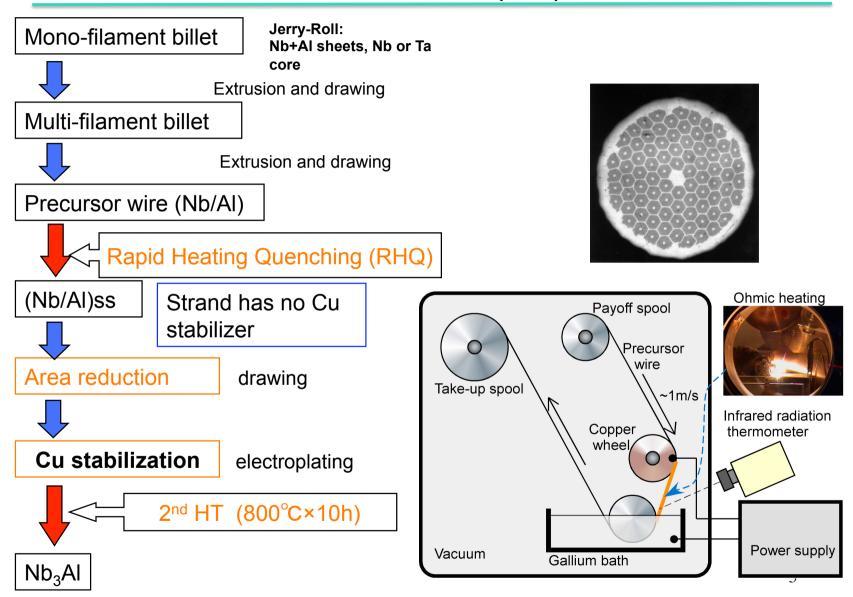
Compared with Nb₃Sn, it has a better strain tolerance.

---> it might be a promising candidate for use in future accelerator magnets (~15 T)

Supercond. Sci. Technol. 18 (2005) p. 284. by N. Banno et al.

Presented at MT-20 by A. Kikuchi et al.

At 150 MPa, Jc of Nb₃Al shows no degradation, however, Jc of Nb₃Sn(RRP) decreases to \sim 1/2 of the value at 0 MPa.


- Items which have required development
 - Non-copper Jc
 - At present, Jc of Nb₃Al is rather lower than Nb₃Sn
 - Stabilization method
 - Magnetization
 - Cabling etc.

Specific target during past three years

development of Ta-matrix wire and fabrication of cables for small coil

- Strand development
 - Compared with Nb-matrix wire
 - Mechanical properties, non-Cu Jc, magnetization
 - Review of fabrication process
- Cable development
 - Trial manufacture of the cable

Introduction (3/3)

Nb-AI billet fabrication experience

(Hitachi Cable)

Billet size		1.35¢ wire length	Num. billet		
			by 2005	by 2008	
samll size	$\sim 30 \text{ mm } \phi$	~50 m	many		
middle size	$\sim 70 \text{ mm } \phi$	~300 m	~30	~10	
large size	$\sim 150 \text{ mm } \phi$	~2500 m	3		

middle size billet

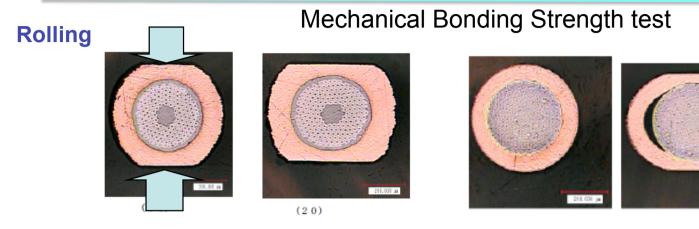
cross section of the wire

Manufactured Nb-Al strands for KEK

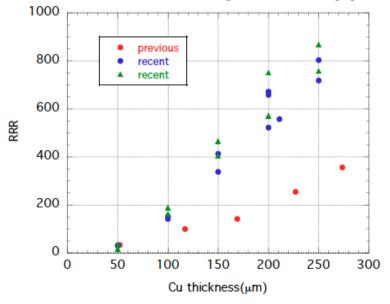
	2003		2005		2006	2006		2007		2007		2008	2008
線材 No.	M21-3		ME451		ME458	ME476		<u>ME492</u>		ME493		ME502	ME501
Matrix material	Nb		Nb		Nb	Та		Та		Ta		Та	Ta
Core material	Nb, Nb		Nb, Nb		Nb, Nb	Та, Та		Та, Та		Nb, Nb		Nb, Ta	Nb, Nb
Matrix ratio	0.8		0.69		0.79	0.8		0.8		0.8		0.95	0.8
Num of filam	144		294		546	222		222		222		222(241)	294(313)
Frequency of wire b	preaking		3		3+crack	2		7		4			
RHQ													
Wire dia (mm)	0.8		1.35		1.35	1.35		1.35		1.35		1.35	1.35
Filam dia (μm)	51		62.7		44.2	69		69.8		69.8		66	60
Barrier thick(μm)	4.6		6.4		4.4	8		8		8		11	8
Twist pitch (mm)	32		55		0	54		0		0		54	54
RHQ I (A)	80.6	80.6	228	228	222	226	226		202				
AR ratio (%)		32		52 72			45		72		66.2		
wire dia (w∕o Cu)		0.66		0.94 0.72			1.00		0.715		0.785		
wire dia (with Cu)							1.40		1.00		1.00		
filament dia (μ m)		34.7		44 33			38		37		40.6		
barrier thick (μ m)		3.1		4.5 3.4			4.4		4.2		4.7		
twist pitch (mm)							98		45		45		
non–Cu Jc (A/mm2))												
@ 10T w/o AR	1602												
@ 15T	661		630		430	623							
@ 10T with AR		2176		1720					1776		1669		
@ 12T with AR		1663		1302					1320		1230		
@ 15T with AR		1032		<u>949</u> 817			807		785		<u>718</u>		

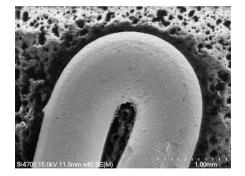
Electroplating technique

KEK


- 1) Strike plating of thin Ni on the surface
- 2) Electroplating of thick copper
- 3) Heat treatment for stabilize the bonding electroplating speed: ~1.5 m/h (Cu thickness of ~0.17 mm)

NIMS


- 1) Ion-plating of thin Cu
- 2) High speed electroplating of thick copper
- 3) Heat treatment for stabilizing the bonding


ion-plating speed: 120 m/h electroplating speed: ~6 m/h

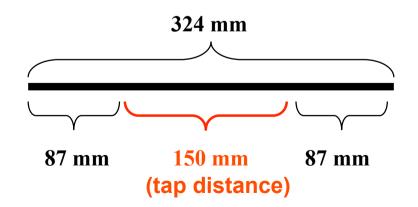
Copper Stabilizer

RRR of electroplated copper

201, 300 per

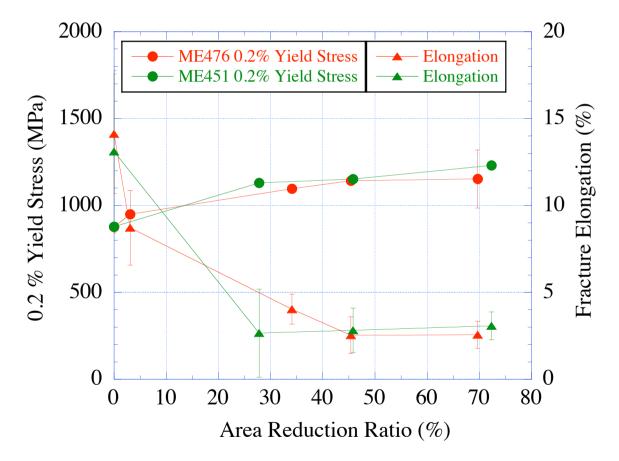
Bent wire to see the folds and projections of Cu stabilizer

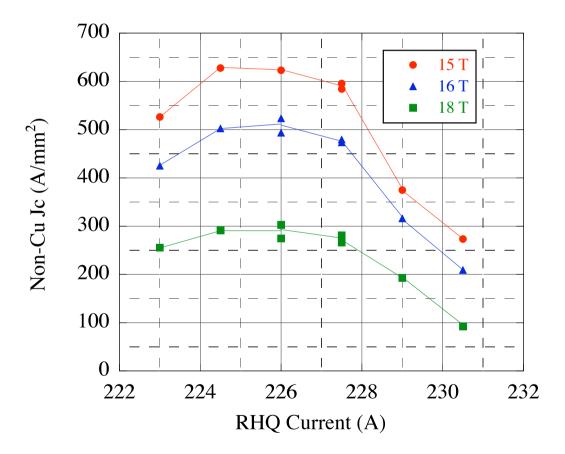
Ic measurement method

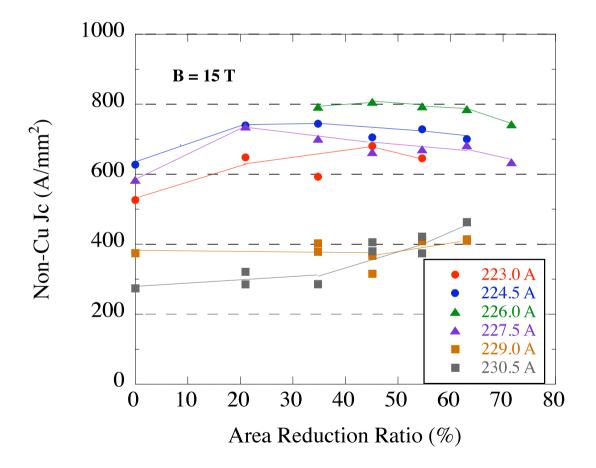

sample preparation

800°Cx 10 hour HT

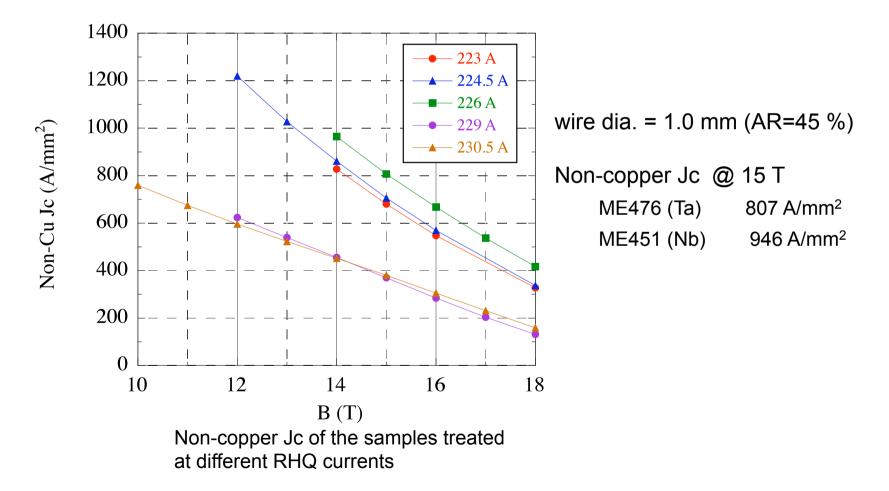
Ic measurement


> sample length	~300 mm		
Ic criterion	:	20 μV/m	
≻ n-value	:	10~40 μV/m	


Mechanical properties of the wire aft RHQ process

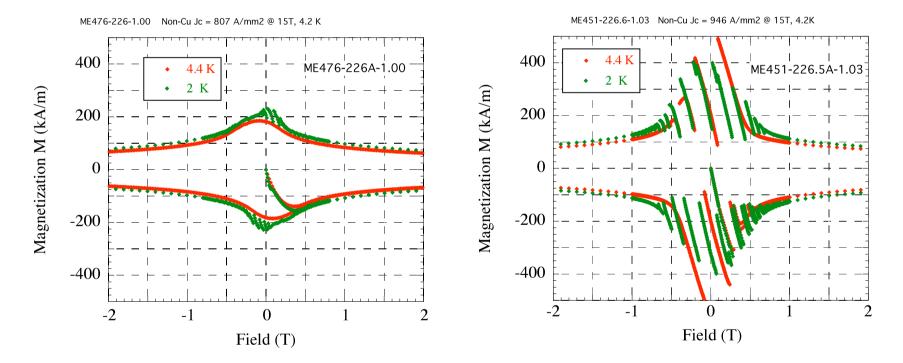

Difference between Nb- and Ta- matrix is fairly small.

Study of Ta-matrix wire (ME476)


Effect of the RHQ current on non-Cu JC (wire dia = 1.35 mm)

Effect of the area reduction ratio on non-Cu Jc

Non-copper Jc of ME476

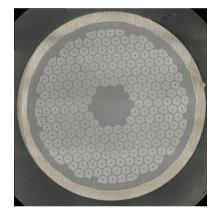


Study of Ta-matrix wire (ME476)

Magnetization (SQUID magnetometer)

Ta-matrix (ME476)

Nb-matrix (ME451)


Study of Ta-matrix (ME476) wire

> Summary

- The difference of the mechanical properties between Ta- and Nbmatrix wires is fairly small.
- The RHQ current to obtain a high Jc is almost the same as that of Nb-matix wire.
- The effect of the area reduction on Jc is also similar to that of Nb-matrix wire. However, the highest Jc seems to be slightly lower than that of the Nb-matrix wire*.
- The low field instability is dramatically improved in Ta-matrix wire.
 - * Recently tried new Ta-matrix wire (restacked method) showed a higher non-Cu Jc (950-1000 A/mm2 @ 15T, 4.2 K) than this ordinal Ta-matrix wire.

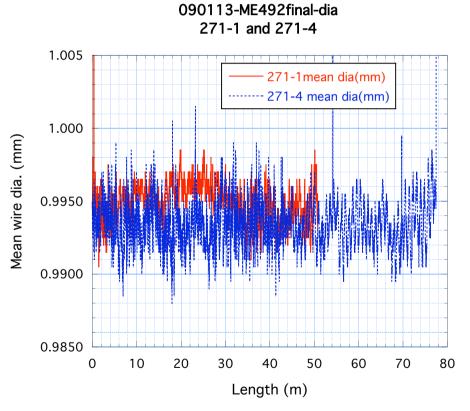
K2(ME492) and K1(ME493) Wires

- Two kinds of Ta-matrix wires were fabricated in 2007, however, the wire breaking happened frequently. K2 (ME492); 7 times K1 (ME493); 4 times
- K2

K1

- > Also it was rather difficult to perform stable RHQ treatment in K2(ME492) wire.
- Although various trouble happened during the fabrication,

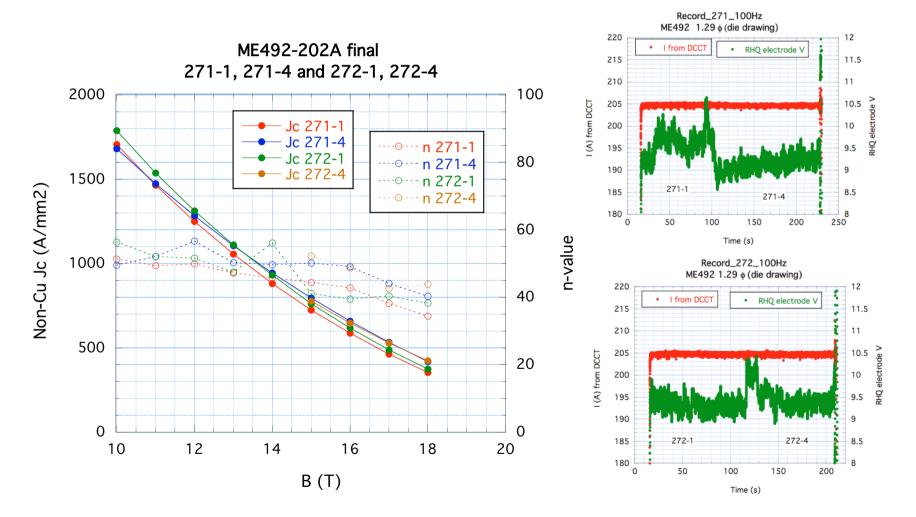
the following strands could be made.


K2 (ME492); ~270 m strand with Cu stabilizer

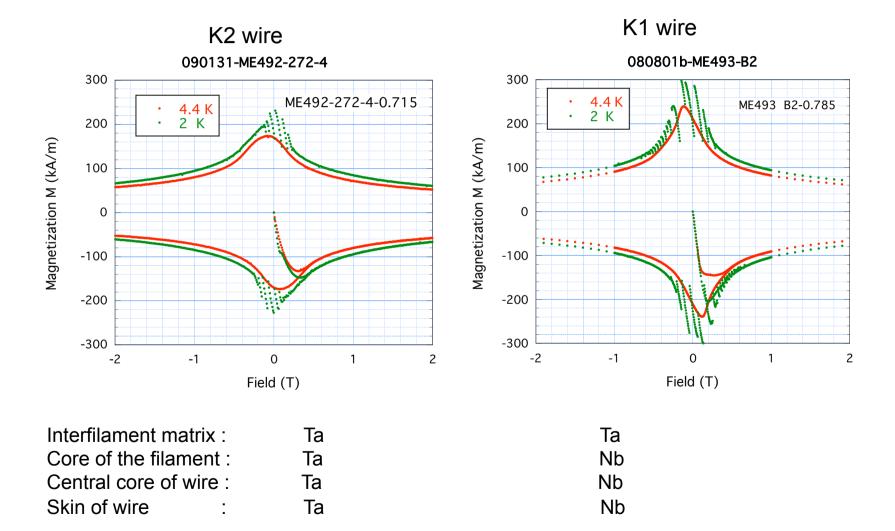
K1 (ME493); ~700 m strand with Cu stabilizer

Using these strand, trial fabrication of Rutherford cable was performed at Fermilab last February and a 22 m long 28-strand cable was made successfully.

K2 (ME492) Wire


Diameter of K2 (ME492) wire after electroplating

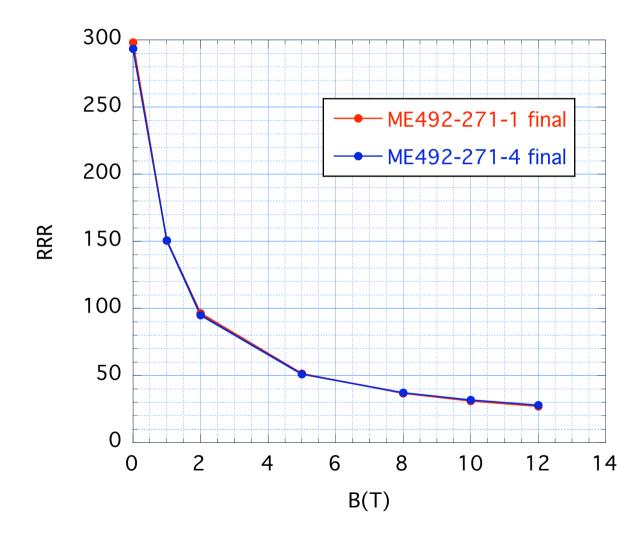
	Length (m)	Mean wire dia. (mm)	σ (mm)
271-1	50	0.995	0.0013
271-4	77	0.993	0.0016
272-1	87	0.995	0.0029
272-4	61	0.996	0.0010


K2 (ME492) Wire

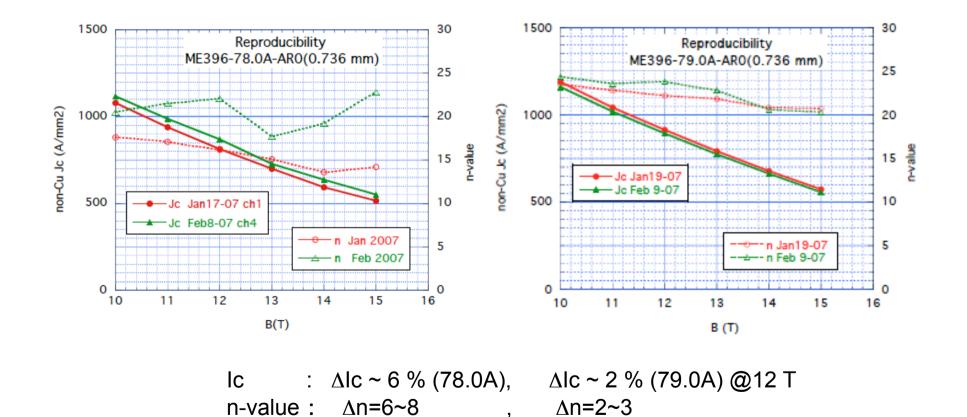
Non-copper Jc and n-value

K2(ME492) and K1(ME493) Wires

Magnetization


Summary

- Fabrication of Ta-matrix wires were performed. Their mechanical and SC properties have been studied and compared with those of the Nb-matrix wire.
- Two kinds of Ta-matrix wire were fabricated in 2007. However, wire breaking happened frequently during the fabrication. In spite of the trouble, we could make the Rutherford cable at Fermilab.


- Items need more improvement
 - reliable precursor fabrication
 - stable RHQ treatment
 - bonding strength of copper stabilizer
 - non-copper Jc

Ic measurement method (2/2)

Reproducibility check of Ic and n-value

